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Abstract. We show that in any spacetime dimension D ≥ 4, degenerate components of the event

horizon do not exist in static vacuum configurations with positive cosmological constant. We also show

that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon

component. Several independent proofs are presented. One proof follows easily from differential

geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein

manifolds.

1. Introduction

In the classical proof of static vacuum black hole uniqueness, the last case to be considered was
that in which degenerate components of the event horizon were present. As was shown in [3, 4],
such black hole configurations cannot occur. This result applies to the 4-dimensional setting with
vanishing cosmological constant Λ = 0. The authors in [4] also obtained certain restrictions in
the higher dimensional setting and in the presence of a nonzero cosmological constant, but were
ultimately unable to extend their result to these situations. The purpose of the present paper is to
do just that for Λ ≥ 0. The main result is as follows.

Theorem 1.

(i) There do not exist static vacuum black holes having a degenerate horizon component in the
presence of a positive cosmological constant Λ > 0.

(ii) A complete solution of the static vacuum equations with Λ = 0 can have no more than one
connected component of a degenerate horizon.

(iii) A solution of the static vacuum equations with Λ = 0 and having an asymptotically flat end1

cannot have a degenerate horizon component.

An immediate consequence of part (iii) is a generalized version of the classical static black hole
uniqueness result. In dimensions D > 4 the uniqueness proofs [6, 7, 8] rely on the positive mass the-
orem and require all horizon components to be nondegenerate. Here we have shown that degenerate
components do not exist, which when combined with [6, 7, 8] leads to the following statement.

Theorem 2. In any dimension D ≥ 4, an asymptotically flat static vacuum black hole is isometric
to a Schwarzschild-Tangherlini solution.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 on which a function ϕ is defined.
Consider the associated static spacetime (R×Mn, G) where the spacetime metric takes the form

(1.1) G = −e−2ϕdt2 + g.

It is assumed that the lapse function is positive on Mn (hence we write it as eϕ), and vanishes on
the topological boundary ∂Mn = M

n \Mn which itself should be a compact smooth manifold. The

1This refers to the standard notion of asymptotic flatness within the black hole uniqueness context, see eg. [7].
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vacuum Einstein equations

(1.2) Ric(G)− 1

2
R(G)G+ ΛG = 0,

are equivalent to the following set of equations on Mn

Ric(g) + Hessgϕ− dϕ⊗ dϕ =
2Λ

n− 1
g,

∆gϕ− |dϕ|2 =
2Λ

n− 1
.

(1.3)

Note that the first equation almost implies the second. Indeed, the first equation together with the
twice contracted second Bianchi identity shows that

(1.4) ∆gϕ− |dϕ|2g =
2Λ

n− 1
+ Ce2ϕ ,

where C is a constant. The second equation of (1.3) is recovered in the case that C = 0.
Recall that a Killing horizon is a null hypersurface defined by the vanishing in norm of a Killing

field V , which is normal to the horizon. In the static case above V = ∂t and the Killing horizon
corresponds to R× ∂Mn. Killing horizons come naturally equipped with a notion of surface gravity
κ, defined through the equation

(1.5) d|V |2 = −2κV.

A component of the horizon is referred to as degenerate (or extreme) if its surface gravity vanishes
κ = 0.

An important observation is that the static vacuum equations can be expressed in terms of the
N -Bakry-Émery-Ricci tensor

(1.6) RicNϕ (g) := Ric(g) + Hessgϕ−
1

(N − n)
dϕ⊗ dϕ .

In general N may take values in the compactified real line, where the last term in (1.6) is removed
when N = ±∞. This expression arises naturally when an N -dimensional metric splits as a warped
product over (Mn, g). Namely, the N -dimensional Ricci tensor splits and its projection onto the base
yields RicNϕ . The term synthetic dimension for N arises since, in this context, N is the dimension of
the total space. The first static vacuum equation in (1.3) may be rewritten as

(1.7) Ricn+1
ϕ (g) =

2Λ

(n− 1)
g.

Metrics which satisfy this relation are referred to as quasi-Einstein [2]. It turns out that many of the

basic Ricci curvature results of Riemannian geometry are known to hold as well for the Bakry-Émery-
Ricci curvature. In particular we will exploit Bakry-Émery versions of Myers’ Theorem, the Splitting
Theorem, and arguments used in the proof of Synge’s Theorem [12]. It is the purpose of this paper
to introduce these techniques into the study of static black hole uniqueness, and thereby establish
Theorem 1. More precisely, Myers’ Theorem and the Splitting Theorem will yield special cases of
Theorem 1 in Section 3, and in Section 4 the Synge type methods will produce a full proof. Section
2 is dedicated to recording technical results concerning degenerate horizons for use in later sections.
We note that the theory associated with Bakry-Émery-Ricci curvature has previously been applied
to study static solutions of the Einstein equations which are geodesically complete, in [1, 14, 15].
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2. Degenerate Components of the Horizon

2.1. Degenerate horizons as asymptotic ends. Consider a degenerate component of the Killing
horizon in a static black hole spacetime. A key prerequisite for application of the Riemannian
geometric techniques mentioned in the introduction, is the fact that within the t = 0 slice such
degenerate components lie infinitely far away from any other point. This has been shown in [3],
although here we offer a simple proof using Gaussian null coordinates [10]. These coordinates may
be introduced near a degenerate horizon, and give the following form of the spacetime metric

(2.1) G = 2dv

(
dr +

1

2
r2F (r, x)dv + rha(r, x)dxa

)
+ hab(r, x)dxadxb.

Here V = ∂v represents the timelike Killing field, r = 0 coincides with the horizon, and hab denotes
the induced metric on H the horizon cross-section. The orbit space metric on a constant time slice
Mn is then given by

(2.2) gij = Gij −
GivGjv
Gvv

= Gij +
GivGjv
r2|F |

.

Note that since the Killing field is timelike away from the horizon

(2.3) F (r, x) < 0 for r > 0.

It follows that

g(∂r, ∂r) =
G2
rv

r2|F |
=

1

r2|F |
,

g(∂r, ∂xa) =
GrvGav
r2|F |

= − rha
r2|F |

,

g(∂xa , ∂xb) = Gab +
GavGbv
r2|F |

= hab +
hahb
|F |

.

(2.4)

Let γ(r) = (r, xa(r)), r ∈ [0, r0] be a smooth curve in the orbit space intersecting H, with tangent
vector γ̇. On this curve |haẋa|+ |F | ≤ c independent of r, as these two functions are continuous on
a compact interval. We then have

(2.5) |γ̇(r)|2 =
(1− rhaẋa)2

r2|F |
+ habẋ

aẋb ≥ 1

2r2|F |
for r0 sufficiently small, and hence the length of this curve diverges

(2.6) s(r) =

∫ r0

r
|γ̇(r)|dr ≥ 1

2c

∫ r0

r

dr

r
→∞ as r → 0 .

Lemma 3. A degenerate component of the horizon cross-section is infinitely distant from any point
in a constant time slice of a smooth static spacetime.

The derivation above used only (2.1) and the timelike nature of the static Killing field in the
interior. The result did not require the Einstein equations to hold.
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2.2. Near-horizon geometry. Typically the geometry of (Mn, g) is asymptotically cylindrical in
a neighborhood of a degenerate component of the horizon cross-section, and thus one expects appro-
priate decay of certain geometric quantities upon approach to H. In order to establish the desired
estimates take the near-horizon limit v → v

ε , r → εr, and ε → 0, which produces the near-horizon
geometry metric

(2.7) GNH = 2dv

(
dr +

1

2
r2F (x)dv + rha(x)dxa

)
+ hab(x)dxadxb.

If G satisfies the vacuum Einstein equations then the near-horizon data (F, ha, hab) solve the near-
horizon geometry equations on H

Rab =
1

2
hahb −∇(ahb) + Λhab,

F =
1

2
|h|2 − 1

2
∇aha + Λ,

(2.8)

where Rab denotes the Ricci tensor associate with metric hab. If Λ ≥ 0, then integrating the second
equation in (2.8) and using the divergence theorem yields

(2.9)

∫
H
F =

∫
H

(
1

2
|h|2 + Λ

)
≥ 0,

since it is assumed that H is compact without boundary. In light of (2.3) it must be the case
that F (x) ≤ 0, and hence (2.9) shows that F (x) ≡ 0. In fact we immediately obtain the following
nonexistence result when Λ > 0 and strong restrictions when Λ = 0:

Proposition 4. In any spacetime dimension D ≥ 4, there do not exist static vacuum black holes
with Λ > 0 and having a degenerate horizon component. Moreover, if (F, ha, hab) is the near-horizon
data of a degenerate horizon component in a static vacuum black hole with Λ = 0, then F = ha = 0
and hab is Ricci flat.

The derivation given above leading to this result made no use of Lemma 3.
The second part of this proposition concerning the case Λ = 0 has been independently proved in

[4]. It implies the nonexistence of such static vacuum solutions with a degenerate horizon component
when D = 4, as the Ricci flat condition is not compatible with the topological restrictions [10] on
extreme horizons in this case.

2.3. The vanishing of F . While we have seen that the Λ = 0 near-horizon equations lead us to
conclude that F vanishes on approach to degenerate horizons in vacuum spacetimes, the set-up of
subsection 2.1 leads to a more general result for all Λ ≥ 0.

To see this, consider a smooth curve γ(s) = (r(s), xa(s)), parameterized by arclength, which
as above connects a point interior to Mn to the degenerate horizon cross-section H. Recall that
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−2ϕ = log(−|∂v|2) = log(r2|F |), and let γ̇ = dγ/dr. Then

∂s(ϕ ◦ γ) =(∂rϕ)
dr

ds
+ (∂xaϕ)

dxa

ds

= − ∂rϕ

|γ̇|
− ẋa∂xaϕ

|γ̇|

=
∂r log

(
r
√
|F |
)

|γ̇|
+
ẋa∂xa log

(
r
√
|F |
)

|γ̇|

=
∂r

(
r
√
|F |
)

r
√
|F ||γ̇|

+
rẋa∂xa

√
|F |

r
√
|F ||γ̇|

.

(2.10)

According to (2.5) we have r
√
|F ||γ̇| ≥ 1/

√
2 for small r, and as above |ẋa| ≤ c. It follows that

(2.11) |∂s(ϕ ◦ γ)| = O(
√
|F |+ r) as r → 0.

This implies the following result.

Lemma 5. Let (R×Mn,−e−2ϕdt2 + g) be a static vacuum spacetime with nonnegative cosmological
constant Λ ≥ 0. If γ(s) is a smooth curve in the orbit space parameterized by arclength and connecting
a point interior to Mn to a degenerate horizon cross-section, then F ◦ γ → 0 and ∂s(ϕ ◦ γ) → 0 as
s→∞.

3. Application of Myers’ Theorem and the Splitting Theorem

In the last section, we showed how Proposition 4 (and thus much of Theorem 1) followed easily from
the second of the two equations in (2.8). In this section, we show that parts (i) and (ii) of Theorem
1 follow easily from the first of the two equations in (2.8), together with Lemma 3, by application of
known results from Riemannian geometry.

A classical result in Riemannian geometry asserts that a complete manifold with Ricci curvature
bounded below by a uniform positive constant must have finite diameter. This is known as Myers’
Theorem [12]. It turns out that such a result is valid when the boundedness condition Ric ≥ c > 0

for the Ricci curvature is replaced by RicNf ≥ c > 0 for the N -Bakry-Émery-Ricci tensor, for any
twice differentiable f and any N > n.

Theorem 6 ([13, Theorem 5]). Let (Mn, g) be a complete Riemannian manifold. If for some N > n
there exists a C2 function ϕ such that RicNϕ (g) ≥ Λg, Λ > 0, then (Mn, g) has finite diameter.

The static vacuum equations imply (1.7), and therefore the hypotheses of this version of Myers’
Theorem are satisfied when the cosmological constant is positive and nondegenerate horizons (i.e.,
minimal surface boundaries) are not present. It follows that the constant time slices of this solution
are of finite diameter. However, if degenerate horizon components were present, this would contradict
Lemma 3. This yields the next result which partially generalizes the main result of [9] in the static
case.

Proposition 7. There do not exist complete static vacuum solutions with Λ > 0 and having a
degenerate horizon component.

Another basic result for complete Riemannian manifolds of nonnegative Ricci curvature is the
Splitting Theorem of Cheeger and Gromoll [12]. This result states that if such a manifold admits a
line; i.e., a complete geodesic which realizes the distance between any two of its points; then it must
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isometrically split off a Euclidean factor. Extensions of this theorem have been established in the
Bakry-Émery setting. For N = ∞ this was accomplished by Lichnérowicz in [11, §26, pg 90]. The
following statement treats the case of finite N > n.

Theorem 8 ([5, Theorem 1.3]). Let (Mn, g) be a complete connected Riemannian manifold with
a smooth function ϕ and N > n such that RicNϕ (g) ≥ 0. If (Mn, g) admits a line then it splits

isometrically as El×N with l ≥ 1, where N contains no line and El is Euclidean l-space. Furthermore
ϕ is constant on El, and N has nonnegative (N − l)-Bakry-Émery-Ricci curvature.

This may be applied to static vacuum black holes as follows.

Proposition 9. A complete solution of the static vacuum equations with Λ ≥ 0 can have no more
than one connected component of a degenerate horizon.

Proof. Suppose that the time slice (Mn, g) has at least two degenerate horizon components. Then
Lemma 3 implies that it is disconnected at infinity, and hence must contain a line [12, Lemma 41]
connecting two horizon components.

As a solution of the static vacuum equations with Λ ≥ 0, (Mn, g) has nonnegative (n + 1)-

Bakry-Émery-Ricci curvature. The splitting theorem in [5] now applies to show that Mn = El ×N
isometrically, for some N and l ≥ 1. Moreover −e−2ϕ = |∂t|2 is constant on the Euclidean factor
El which contains the line. However this is impossible since the Killing field ∂t is timelike on the
interior of Mn but null on the horizon. �

4. Synge Type Arguments and the Proof of Theorem 1

In this section we will make use of second variation arguments for geodesics, reminiscent of those
used in the typical proof of Synge’s Theorem [12, p 172, Theorem 26] from Riemannian geometry, in
order to give an alternative proof of part (i) and establish part (iii) of Theorem 1. Note that parts
(i) and (ii) have already been proved in previous sections.

Consider a minimizing geodesic γ(s) in Mn parameterized by arclength s ∈ [0,∞), connecting
an interior point to a degenerate component of the horizon cross-section. Let γτ (s), τ ∈ (−ε, ε) be
a 1-parameter family of curves such that γ0 = γ, and denote the variation vector field along γ by
X = ∂τγ0. The energy of each curve on a finite interval is defined by

(4.1) E(τ) =
1

2

∫ s0

0
|∂sγτ |2ds,

and the second variation formula states that

(4.2) E′′(0) =

∫ s0

0

(
|∇sX|2 − 〈R(∂sγ,X)X, ∂sγ〉

)
ds+ 〈∇XX, ∂sγ〉|s0s=0 .

Let {ei}n−1
i=1 denote an orthonormal basis for the orthogonal complement of ∂sγ(0) in Tγ(0)M

n, and
parallel transport this basis along the geodesic to obtain variation fields Xi = f(s)ei(s) where f is a
smooth function on [0, s0]. If Ei denotes the energy associated with this variation, then utilizing the
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static vacuum equation (1.3) and integrating by parts produces

n−1∑
i=1

E′′i (0) =

∫ s0

0

[
(n− 1)f ′2 − Ric(∂sγ, ∂sγ)f2

]
ds+ f2

n−1∑
i=1

〈∇eiei, ∂sγ〉

∣∣∣∣∣
s0

s=0

=

∫ s0

0

[
(n− 1)f ′2 −

(
2Λ

n− 1
−∇s∂sϕ+ (∂sϕ)2

)
f2

]
ds+ f2

n−1∑
i=1

〈∇eiei, ∂sγ〉

∣∣∣∣∣
s0

s=0

=

∫ s0

0

[
(n− 1)f ′2 −

(
2Λ

n− 1
+ (∂sϕ)2

)
f2 − 2ff ′∂sϕ

]
ds

+ f2

(
∂sϕ+

n−1∑
i=1

〈∇eiei, ∂sγ〉

)∣∣∣∣∣
s0

s=0

≤
∫ s0

0

[
(n+ 1)f ′2 −

(
2Λ

n− 1
+

1

2
(∂sϕ)2

)
f2

]
ds+ f2

(
∂sϕ+

n−1∑
i=1

〈∇eiei, ∂sγ〉

)∣∣∣∣∣
s0

s=0

.

(4.3)

The sum of second variations of energy is nonnegative if the variation vector fields vanish at the
endpoints; i.e., if f(0) = f(s0) = 0. Thus we are motivated to minimize the integral on the right-hand
side of (4.3). Consider the Rayleigh quotient

(4.4) λ1 = inf
f(0)=f(s0)=0

∫ s0
0

(
f ′2 − 2Λ

n2−1
f2
)
ds∫ s0

0 f2ds
,

which gives the principal Dirichlet eigenvalue for the operator d2

ds2
+ 2Λ

n2−1
on the interval [0, s0]. A

computation shows that this value is λ1 = π2/s2
0 − 2Λ/(n2 − 1). Since Λ > 0, for a sufficiently

long interval along the geodesic λ1 < 0. Thus by choosing f(s) = sin(πs/s0) to be the principal
eigenfunction a contradiction is achieved from (4.3). This proves (i) of Theorem 1.

For part (iii) the setting is an asymptotically flat static vacuum solution. Assume that it has a
degenerate component of the event horizon. Let γ : [0, s0] → Mn be a geodesic which minimizes
the distance between an r-level set (intersected with Mn) Hr 3 γ(0) in Gaussian null coordinates
near the degenerate component, and a coordinate sphere Sr 3 γ(s0) in the asymptotically flat end.
This geodesic must remain within the interior of Mn. To see this, observe that it cannot intersect a
nondegenerate horizon component tangentially since such surfaces are totally geodesic, and it cannot
intersect these boundaries transversely since it would not be minimizing. Moreover, for similar
reasons γ must meet Hr and Sr orthogonally. We may now follow the second variation arguments
above, choosing a variation γiτ (s) for each orthogonal variational vector field Xi = f(s)ei(s) such

that γiτ (0) ⊂ Hr and γiτ (s0) ⊂ Sr. Then E
′′
i (0) ≥ 0. Furthermore, setting f(s) = e−αϕ◦γ(s) where

0 < α < 1/
√

2(n+ 1) yields

(4.5) (n+ 1)f ′2 − 1

2
|∂sϕ|2f2 =

[
(n+ 1)α2 − 1

2

]
e−2αϕ|∂sϕ|2 ≤ 0.

By letting r → 0 and r→∞ a contradiction is obtained with (4.3) as follows. The left-hand side of
(4.3) is nonnegative, while the integral on the right-hand side tends to a negative number in light of
(4.5), and the boundary terms converge to zero. This last fact is a consequence of the asymptotically
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flat fall-off which implies that

(4.6) e−2αϕ = 1 +O(r−1), ∂sϕ = O(r−1),
n−1∑
i=1

〈∇eiei, ∂sγ〉 = O(r−1) as r→∞,

and the asymptotics

(4.7) e−2αϕ → 0, ∂sϕ→ 0,
n−1∑
i=1

〈∇eiei, ∂sγ〉 → 0 as r → 0,

which result from the vanishing of |∂t| at the horizon and Lemma 5. In particular, the last of these
limits shows that the mean curvature of Hr tends to zero. This can be seen from the fact that the
horizon cross-section H0 is a future apparent horizon, and since the t = 0 slice is time symmetric the
mean curvature agrees with the future null expansion for any r so that H = θ+ → 0. This completes
the proof of Theorem 1.(iii).
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ture, Ann Inst Fourier, 59 (2009), 563-573.

[6] G. Gibbons, D. Ida, and T. Shiromizu, Uniqueness of (dilatonic) charged black holes and black p-branes in higher

dimensions, Phys. Rev. D, 66 (2002), 044010.

[7] G. Gibbons, D. Ida, and T. Shiromizu, Uniqueness and non-uniqueness of static vacuum black holes in higher

dimensions, Prog. Theor. Phys. Suppl., 148 (2002), 284.

[8] S. Hwang, Rigidity theorem for Ricci flat metrics, Geometriae Dedicata, 71 (1998), 5-17.

[9] M. Khuri, and E. Woolgar, Nonexistence of extremal de Sitter black rings, Class. Quantum Grav., 34 (2017),

22LT01. arxiv:1708.03627

[10] H. Kunduri, and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Reviews in

Relativity, 16 (2013), no. 8.

[11] A. Lichnérowicz, Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à
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